Local Non-Bossiness

Eduardo Duque Rosas, Juan S. Pereyra and Juan Pablo Torres-Martinez

LSE, Universidad de Montevideo, University of Chile

Work in Progress Seminar, LSE

November 9, 2025

What is school choice?

- **Problem:** Assign students to schools (without money).
- Centralized organization.
- Students have (ordinal) preferences over schools.
- Schools have priorities (ranking over students).
- Schools' capacities.
- Mechanism $f(Pref, Priorities, Q) \rightarrow Matching.$

Increasing number of centralized systems

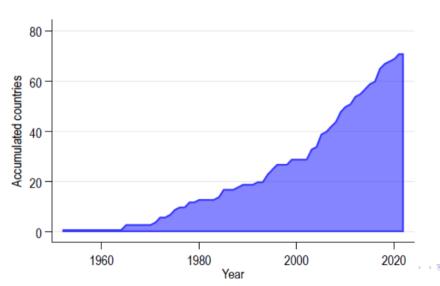
Countries with school choice

Map 1 Countries with at least one coordinated system

Figure: Source: Neilson (2024)

Recent evolution

Figure 2 Number of accumulated countries with a CCAS



The choice of the mechanism

- What mechanism should we use?
- \neq mechanisms \Rightarrow \neq properties
- Student-optimal DA is one of the most popular mechanisms.
- It is the **only stable and strategy-proof** mechanism.
 - Stability: a student prefers a school over her assignment ⇒ all students assigned to it have higher priority.
 - Strategy-proofness: A student cannot do better than submitting truthfully.

The use of different mechanisms

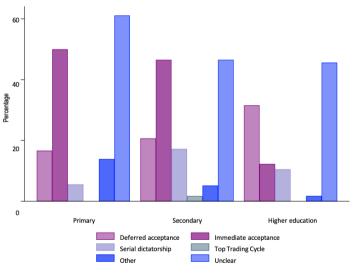


Figure: Source: Neilson (2024)

Preferences and Priorities (unit capacities):

P_1	P_2	P_3	>	-1	\succ_2	\succ_3	
s ₂	s_1	s_1		1	2	2	
s_1	<i>s</i> ₂	s ₂		3	1	1	
<i>s</i> ₃	<i>s</i> ₃	<i>s</i> ₃	:	2	3	3	

Preferences and Priorities (unit capacities):

P_1	P_2	P_3		\succ_1	\succeq_2	\succ_3
s ₂	s_1	<i>s</i> ₁	_	1	2	2
s_1	<i>s</i> ₂	<i>s</i> ₂		3	1	1
s 3	s 3	<i>5</i> 3		2	3	3

• First Step: Student 1 makes a proposal to school s_2 , Student 2 makes a proposal to school s_1 , and Student 3 makes a proposal to school s_1 . School s_2 accepts Student 1's offer, and school s_1 accepts Student 3's offer because $3 \succ_{s_1} 2$. Student 2 is left alone.

$$\mu_{1-Step} = \begin{pmatrix} 1 & 2 & 3 \\ s_2 & \emptyset & s_1 \end{pmatrix}$$

Preferences and Priorities (unit capacities):

P_1	P_2	P_3	\succ_1	\succeq_2	\succ_3	
s ₂	s_1	<i>s</i> ₁	1	2	2	
s_1	<i>s</i> ₂	s ₂	3	1	1	
<i>s</i> ₃	<i>s</i> ₃	<i>s</i> ₃	2	3	3	

• First Step: Student 1 makes a proposal to school s_2 , Student 2 makes a proposal to school s_1 , and Student 3 makes a proposal to school s_1 . School s_2 accepts Student 1's offer, and school s_1 accepts Student 3's offer because $3 \succ_{s_1} 2$. Student 2 is left alone.

$$\mu_{1-Step} = \begin{pmatrix} 1 & 2 & 3 \\ \mathsf{s}_2 & \emptyset & \mathsf{s}_1 \end{pmatrix}$$

• **Second Step**: Student 2 makes a proposal to school s_2 . School s_2 accepts Student 2's offer because $2 \succ_{s_2} 1$. Student 1 is left alone.

Preferences and Priorities (unit capacities):

P_1	P_2	P_3	\succ_1	\succ_2	≻3
<i>s</i> ₂	s_1	s_1	1	2	2
s_1	<i>s</i> ₂	s ₂	3	1	1
<i>s</i> ₃	<i>s</i> ₃	<i>s</i> ₃	2	3	3

$$\mu_{2-Step} = \begin{pmatrix} 1 & 2 & 3 \\ \emptyset & \mathsf{s}_2 & \mathsf{s}_1 \end{pmatrix}$$

Preferences and Priorities (unit capacities):

P_1	P_2	P_3	\succ_1	\succ_2	\succ_3
s ₂	s_1	s_1	1	2	2
s_1	<i>s</i> ₂	s ₂	3	1	1
<i>s</i> ₃	<i>s</i> ₃	<i>s</i> ₃	2	3	3

$$\mu_{2-Step} = \begin{pmatrix} 1 & 2 & 3 \\ \emptyset & \mathsf{s}_2 & \mathsf{s}_1 \end{pmatrix}$$

• **Third Step**: Student 1 makes a proposal to school s_1 . School s_1 accepts Student 1's offer because $1 \succ_{s_1} 3$. Student 3 is left alone.

Preferences and Priorities (unit capacities):

$$\mu_{3-Step} = \begin{pmatrix} 1 & 2 & 3 \\ s_1 & s_2 & \emptyset \end{pmatrix}$$

Preferences and Priorities (unit capacities):

$$\mu_{3-Step} = \begin{pmatrix} 1 & 2 & 3 \\ s_1 & s_2 & \emptyset \end{pmatrix}$$

• Fourth Step: Student 3 makes a proposal to school s_3 . School s_3 accepts Student 3's offer.

$$\mu^{DA} = \begin{pmatrix} 1 & 2 & 3 \\ \mathsf{s}_1 & \mathsf{s}_2 & \mathsf{s}_3 \end{pmatrix}$$

Preferences and Priorities (unit capacities):

$$\mu_{3-Step} = \begin{pmatrix} 1 & 2 & 3 \\ s_1 & s_2 & \emptyset \end{pmatrix}$$

• **Fourth Step**: Student 3 makes a proposal to school s_3 . School s_3 accepts student's 3 offers.

$$\mu^{DA} = \begin{pmatrix} 1 & 2 & 3 \\ \mathsf{s}_1 & \mathsf{s}_2 & \mathsf{s}_3 \end{pmatrix}$$

Motivation

• However, it has a drawback, it is **bossy**:

A change in a student's preference can modify the assignment of others without changing her own.

Why is bossiness important?

Preferences and Priorities (unit capacities):

Suppose preferences of 1 change to:

Note that the outcome of DA is inefficient. In general, when DA is not efficient, there is a set of "bossy" students.

Why is non-bossiness important? (cont'd)

Suppose that students have preferences over matchings:

$$\begin{pmatrix} 1 & 2 & 3 \\ s_2 & s_3 & s_1 \end{pmatrix} \succ_1 \begin{pmatrix} 1 & 2 & 3 \\ s_2 & s_1 & s_3 \end{pmatrix}$$

Student 1 can manipulate and improve her situation.

Also, it allows for coalition manipulations.

What do we do?

- We take a closer look at bossiness: What is its scope?
- New incentive property: a mechanism is locally non-bossy if

whenever a student changes her preferences without changing her assignment, her classmates remain the same.

Equivalently,

a student cannot change her classmates without changing the school to which she is assigned.

• This limits bossiness even in the one-to-one case.

Contribution

- We first show that DA is locally non-bossy.
- For any mechanism:

```
(Papai) Strategy-proof + non-bossy \Rightarrow Group SP.
```

 $\mathsf{Strategy}\text{-}\mathsf{proof} + \mathsf{locally} \; \mathsf{non}\text{-}\mathsf{bossy} \Rightarrow \mathsf{Locally} \; \mathsf{group} \; \mathsf{SP}.$

Oharacterize DA without priorities:

```
IR
weak non-wasteful
population-monotonic ⇔
SP
weak WrARP
weak local non-bossy
```

DA for some profile of priorities.

Contribution (cont'd)

- **4.** Introduce "externalities": preferences over matchings.
 - there may no exist a stable matching.
 - school-lexicographic preferences $\Rightarrow \exists$ stable matching but ...
 - it may not exist a stable and SP mechanism.
 - We define school-lexicographic preferences over colleagues:

students care are first about the school and then only about their classmates,

- "DA" is stable and SP.
- Why might a student want to misreport her preferences?
 - Get a better school (SP)
 - Get preferred classmates (local non-bossiness)
- There is limited room to expand the domain.

Literature

- Bossiness of DA. Many papers: Papái (2000), Ergin (2002)... Afacan and Dur (2017) school-proposing DA is non-bossy for the students. Our contribution: bossiness of DA is limited.
- **Axiomatization of DA.** Kojima and Manea (2010), Morrill (2013), and Ehlers and Klaus (2014, 2016) characterize DA without appealing to stability. *Our contribution: extend Ehlers and Klaus (2016) from unit to multiple capacities.*
- Matching with externalities. Dutta and Massó (1997): lexicographic preferences. Duque and Torres-Martínez (2023) show that a stable and SP mechanism may not exist. Our contribution: new preference domain for SP and stability.

Model

- Let *N* be a set of students and *S* a set of schools.
- For each school s, \succ_s priority, and capacity $q_s \ge 1$.
- For each student i, preferences P_i defined on $S \cup \{s_0\}$.
- Matching is $\mu: N \to S \cup \{s_0\}$ that respects capacities.
- \mathcal{M} is set of matchings.
- ullet Preference domain $\mathcal{P}=\mathcal{L}^{|N|}$, \mathcal{L} set of strict linear orders.
- Mechanism $\Phi: \mathcal{P} \to \mathcal{M}$. Notation: $\Phi_i(P_i, P_{-i})$ and $\Phi_s(P)$.

Properties

- **1** μ is **individually rational** if **no** student *i* prefers s_0 to $\mu(i)$.
- **2** μ is **stable** if it is IR and there is **no** $(i, s) \in N \times S$ such that:
 - $sP_i\mu(i)$ and either
 - $|\mu(s)| < q_s$ or
 - $i \succ_s j$ for some $j \in \mu(s)$.
- **1** Φ is **strategy-proof** if there are **no** $i \in N$, $P \in \mathcal{P}$, and $P'_i \in \mathcal{L}$ such that

$$\Phi_i(P'_i, P_{-i})P_i\Phi_i(P).$$

Non-bossy and its local version

• Φ is **non-bossy** if for all $i \in N$, $P \in \mathcal{P}$, and $P'_i \in \mathcal{L}$,

$$\Phi_i(P) = \Phi_i(P'_i, P_{-i})$$
 implies that $\Phi(P) = \Phi(P'_i, P_{-i})$.

Non-bossy and its local version

• Φ is **non-bossy** if for all $i \in N$, $P \in \mathcal{P}$, and $P'_i \in \mathcal{L}$,

$$\Phi_i(P) = \Phi_i(P'_i, P_{-i})$$
 implies that $\Phi(P) = \Phi(P'_i, P_{-i})$.

• [NEW] A mechanism Φ is **locally non-bossy** if for all $i \in N$, $P \in \mathcal{P}$, $P'_i \in \mathcal{L}$, and $s \in S \cup \{s_0\}$,

$$\Phi_i(P) = \Phi_i(P'_i, P_{-i}) = s$$
 implies that $\Phi_s(P) = \Phi_s(P'_i, P_{-i})$.

Group SP and its local version

- Φ is **group strategy-proof** if there are **no** $P \in \mathcal{P}$, $C \subseteq N$, and $P'_C \in \mathcal{L}^{|C|}$ such that:
 - For some $i \in C$, $\Phi_i(P'_C, P_{-C}) P_i \Phi_i(P)$.
 - For each $j \in C$, $\Phi_j(P'_C, P_{-C}) R_j \Phi_j(P)$.
- A mechanism Φ is **locally group strategy-proof** if there are **no** $s \in S \cup \{s_0\}$, $P \in \mathcal{P}$, $C \subseteq \Phi_s(P)$, and $P'_C \in \mathcal{L}^{|C|}$ such that:
 - For some $i \in C$, $\Phi_i(P'_C, P_{-C}) P_i \Phi_i(P)$.
 - For each $j \in C$, $\Phi_j(P_C, P_{-C}) R_j \Phi_j(P)$.

Results I

Theorem

The student-optimal DA is locally non-bossy.

Results I

Theorem

The student-optimal DA is locally non-bossy.

Under DA no student can modify her preferences to change her classmates without changing her school.

But if multiple students, all assigned to the same school, do it?

Results I

Theorem

The student-optimal DA is locally non-bossy.

Under DA no student can modify her preferences to change her classmates without changing her school.

But if multiple students, all assigned to the same school, do it?

This is: **locally group non-bossy**.

Proposition

If $\Phi: \mathcal{P} \to \mathcal{M}$ is and a locally non-bossy and strategy-proof mechanism, then it is locally group non-bossy.

Results II: relation with Group SP

Papái (2000):

$$\mathsf{SP} \, + \, \mathsf{Non\text{-}bossiness} \iff \mathsf{Group} \, \mathsf{SP}$$

In particular, DA is not Group SP.

We show:

$$\mathsf{SP} \; + \; \mathsf{Locally} \; \mathsf{Non\text{-}bossiness} \Rightarrow \mathsf{Locally} \; \mathsf{Group} \; \mathsf{SP}$$

In particular, DA is Locally Group SP.

Results III: Characterization without priorities

Mechanism: $\Phi: \mathcal{N} \times \mathcal{P} \to \cup_{N \in \mathcal{N}} \mathcal{M}(N)$.

- Φ is weakly non-wasteful if $s P_i \Phi_i(N, P)$ and $\Phi_i(N, P) = s_0$, then $|\Phi_s(N, P)| = q_s$.
- Φ is **population-monotonic** if $N \subseteq N'$, $i \in N$, and $P \in \mathcal{P}$ we have that $\Phi_i(N, P)R_i\Phi_i(N', P)$.
- A mechanism Φ is **weakly WrARP** when for all $N, N' \in \mathcal{N}, P \in \mathcal{P}$, and $s \in S$ such that $|N| = |N'| = q_s + 1$ and s is the only acceptable school for every $k \in N \cup N'$,

$$\left[i,j\in N\cap N',i\in\Phi_s(N,P),j\in\Phi_s(N',P)\setminus\Phi_s(N,P)\right]$$
$$\Longrightarrow i\in\Phi_s(N',P).$$

Results II: characterization (cont'd)

• A mechanism Φ is **weakly locally non-bossy** if for all $N \in \mathcal{N}$, $i \in N$, $P \in \mathcal{P}$, $P'_i \in \mathcal{L}$, and $s \in S$, we have that:

$$\Phi_i(N,P) = \Phi_i(N,(P_i',P_{-i})) = s \text{ implies that}$$

$$\Phi_s(N,P) = \Phi_s(N,(P_i',P_{-i}))$$

Weakly WrARP and weakly locally non-bossy hold trivially when $q_s = 1 \forall s$.

Results II: characterization (cont'd)

1 Ehlers and Klaus (2016), $\mathbf{q_s} = \mathbf{1}$, $\forall s$:

IR

weak non-wasteful population-monotonicity \iff SP

DA for some profile of priorities.

Our result for general capacities:

IR

weak non-wasteful population-monotonicity ←⇒
SP

weak WrARP

weak local non-bossy

DA for some profile of priorities.

Results III: Externalities

Most of the lit. \Rightarrow students care only about the assigned school

Preferences over matchings \Rightarrow many results break down.

Example:(Echenique and Yenmez, 2007) $q_1 = q_2 = 2$

P_1	P_2	P_3	\succ_1	\succ_2
$s_1, \{1, 2\}$	$s_2, \{2, 3\}$	$s_1, \{1, 3\}$	1	3
s_1 , $\{1,3\}$	s_1 , $\{1, 2\}$	s_2 , $\{2,3\}$	2	2
s_1 , $\{1\}$	s_1 , $\{2\}$	s_2 , $\{3\}$	3	
	s_2 , $\{2\}$			

IR Matchings:

$$\begin{pmatrix} s_1 & s_2 \\ \{1,2\} & \{3\} \end{pmatrix}, \begin{pmatrix} s_1 & s_2 \\ \{1,3\} & \{2\} \end{pmatrix}, \begin{pmatrix} s_1 & s_2 \\ \{1\} & \{2,3\} \end{pmatrix}$$

∄ stable matching

Results III: externalities (cont'd)

- School-lexicographic preference (\mathcal{D}) : \trianglerighteq_i defined on \mathcal{M} such that, for any $\mu, \eta \in \mathcal{M}$:
 - If $\mu(i) \neq \eta(i)$, then either $\mu \triangleright_i \eta$ or $\eta \triangleright_i \mu$, where \triangleright_i is the strict part of \trianglerighteq_i .
 - If $\mu \rhd_i \eta$ and $\mu(i) \neq \eta(i)$, then $\mu' \rhd_i \eta'$ for all matchings $\mu', \eta' \in \mathcal{M}$ such that $\mu'(i) = \mu(i)$ and $\eta'(i) = \eta(i)$.
- In \mathcal{D} we can define $P(\trianglerighteq) = (P_i(\trianglerighteq))_{i \in N} \in \mathcal{P}$.
- Recover stability but a stable and SP mechanism may not exist (Duque and Torres-Martínez, 2023).

Results III: externalities (cont'd)

We further restrict the domain.

School-lexicographic preference over colleagues: $\mathcal{D}_c \subseteq \mathcal{D}$ is the set of profiles $(\trianglerighteq_i)_{i \in N}$ such that $\mu \rhd_i \eta$ and $\mu(i) = \eta(i) = s$ imply that $\mu(s) \neq \eta(s)$.

In \mathcal{D}_c a student is indifferent between two matchings where she is assigned to same school with the same classmates.

Theorem

In any school choice context (S, N, \succ, q) , the mechanism $\overline{DA} : \mathcal{D}_c \to \mathcal{M}$ defined by $\overline{DA}(\trianglerighteq) = DA(P(\trianglerighteq))$ is stable and strategy-proof.

Moreover, is the only stable and strategy-proof mechanism.

Limited room to expand the domain

 $q_1=2$, $q_2=q_3=q_4=1$. All but 1 have preferences in \mathcal{D}_c .

$P_1(\trianglerighteq)$	$P_2(\trianglerighteq)$	$P_3(\trianglerighteq)$	$P_4(\trianglerighteq)$	$P_5(\trianglerighteq)$	\succ_1	\succ_2	≻ 3	≻4	
<i>s</i> ₃	<i>s</i> ₂	s_1	s_1	<i>S</i> ₄	4	3	1	2	
	s_1	<i>s</i> ₂			2	2	2	5	
					1				
					3				
					5				

Notice that $[N, S, \succ, q, P(\trianglerighteq)]$ has only two stable matchings:

$$\mu = ((1, s_3), (2, s_1), (3, s_2), (4, s_1), (5, s_4)), \text{ (school-optimal)}$$
 $\eta = ((1, s_3), (2, s_2), (3, s_1), (4, s_1), (5, s_4)) \text{ (student-optimal)}.$

Suppose $\mu \trianglerighteq_1 \eta$.

If $\Phi(\trianglerighteq) = \mu$, consider $P_2' : s_2, s_4$, and η is the only SM.

If $\Phi(\trianglerighteq) = \eta$, consider $P_1': s_1, s_3, \ldots$, and μ is the only SM.

Concluding Remarks

- DA is locally non-bossy: a student cannot change her classmates without changing her own school.
- For any SP mechanism, local non-bossiness guarantees that no coalition of students assigned to the same school can misrepresent their preferences to either:
 - improve their assignments or
 - maintain their school while modifying their classmates.
- DA still performs well when students care about the assignments of others, as long as they first consider their assigned school and then their classmates.
- The incompatibility between stability and SP in contexts where students prioritize their own school is caused by the fact that preferences extend beyond their classmates.

Thanks!